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ABSTRACT:

Transmission electron microscopy (TEM) has led to important discoveries in atomic imaging and
as an atom-by-atom fabrication tool.  Using electron beams, atomic structures can be patterned,
annealed and crystallized,  and nanopores can be drilled in thin membranes.  We review current
progress  in  TEM analysis  and  implement  a  computer  vision  nanopore-detection  algorithm that
achieves a 96% pixelwise precision in TEM images of nanopores in 2D membranes (WS2), and
discuss parameter optimization including a variation on the traditional grid search and gradient
ascent. Such nanopores have applications in ion detection, water filtration, and DNA sequencing,
where  ionic  conductance  through  the  pore  should  be  concordant  with  its  TEM-measured  size.
Standard computer vision methods have their advantages as they are intuitive and do not require
extensive training data. For completeness, we briefly comment on related machine learning for 2D
materials  analysis  and discuss  relevant  progress  in  these fields.  Image analysis  alongside TEM
allows correlated fabrication and analysis done simultaneously in situ to engineer devices at the
atomic scale.

Keywords: TEM, transition metal dichalcogenide, 2D nanopores, ion transport, computer vision,
OpenCV
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1. INTRODUCTION:

Microscopy methods have become increasingly  refined as  materials  and devices reach smaller
scales.  Transmission  electron  microscopy  (TEM)  provides  insights  into  the  structure,  properties,  and
interactions  of  materials  down  to  ~  40  pm  resolution1.  Specifically,  low-dimensional  materials  are
projected to be the future of electronic and optical technology. For example, 2D spintronics may provide
electronics  beyond  Moore’s  law,2  and  2D  materials-based  radio  frequency  wireless  communication
systems have been advocated as platforms for Internet-of-things applications3. 

In TEM, the combination of spatial, time, and energy resolution allows for high quality insight into
the  morphology,  chemistry,  and  electronic  structure  of  materials4.  Developments  have  spanned
observations  on  the  distribution  of  dopants5  and  defects6  in  graphene, in  situ  imaging  of  VO2  phase
transformations7, structural shifts during material growth8,9, atomic surface diffusion in Pt nanoparticles10

, distinction of phases in nanoparticles11, and more. TEM has been studied for fabrication12–19, including
patterning, annealing and crystallization to make 2D nanopores, nanoribbons, and nanopore-nanoribbon
field-effect-transistor devices.  Electron-beam gating has been demonstrated to realize in situ 2D MoS2

field-effect transistors20, towards building materials atom-by-atom. Though TEM-based fabrication may
be replaced for some applications with lower cost methods (for example making pores by acid-etching21

and  electroporation22  vs.  irradiation23),  in  situ  TEM  allows  atomic  precision,  where  observation,
fabrication, and analysis can happen simultaneously. Automated image analysis is important to achieve
this goal, as opposed to manual image processing one-by-one—given a single mm2 2D material sample,
1.6 billion TEM images of area 25 nm x 25 nm are required to image the mm2 area. 

In this paper, we overview computer algorithms to automate TEM image analysis (Section 1.3) and
focus on computer vision which has been researched as early as the 1980s24. Standard computer vision
methods using pre-built functions are favorable when knowledge about specific features in the image are
incorporated into the feature recognition algorithm and/or the problem is not particularly complicated.
We present new aberration-corrected scanning transmission electron microscope (AC-STEM) images of
nanoporous 2D monolayer WS2, created by ion irradiation. We overview the 2D materials growth, transfer
of  2D  flakes  onto  TEM-suitable  devices,  nanopore  fabrication,  followed  by  TEM  imaging  and  analysis
through  standard  computer  vision  methods.  We  review  the  relevant  background  and  applications  for
these  2D  pores,  nanodevice  fabrication  methods,  and  image  analysis  techniques.  Image  analysis  is
performed  using  standard  computer  vision  and  we  discuss  two  methods  to  optimize  algorithm
parameters:  a  variation  on  a  traditional  grid  search  with  a  visual  component  and  a  gradient  descent
implementation (gradient ascent). For completeness, we briefly address a deep learning application. 

1.1 Background on 2D transition metal dichalcogenides and 2D nanopore devices 

Two-dimensional  transition  metal  dichalcogenides  (TMDs)  like  MoS2  and  WS2  have  garnered
attention for microelectronics, batteries, solar cells, sensors, and biomedicine.25 They share some aspects
with  graphene26,  combining  atomic  thickness,  a  direct  band  gap,  strong  spin-orbit  coupling,  and
robustness27,  and  present  interesting  properties  as  atomically-thin  membranes28.  2D  TMDs  offer  the
possibility to fabricate holes for applications from water filtration and desalination29,30 to DNA/protein
sequencing31 and molecular sensing. A summary of 2D pores32 is in Refs. 30 and 3330,33. Sub-nanometer
vacancies  in  2D  materials  have  been  created,  for  example  with  electron-beam  irradiation34–38,  ion
irradiation23,39–41, oxygen plasma42, and chemical etching21,43, where ion-irradiated 2D membranes can
have ~ 10,000 to 70,000 pores/μm2 with an average diameter of ~ 0.5 nm 40 (Figure 1). Sub-nanometer
vacancies have applications in fluid filtration as they are comparable to the size of water molecules ( ~ 0.3
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nm)  and  hydrated  ions   (~  1  nm)29.  Other  applications  include  molecular  analysis  and  osmotic  power
generation44,  and atomic  vacancies  can serve for  efficient  water-desalination because water  transport
scales  inversely  with  membrane thickness45–47.2D material  pores  have  also  been investigated for  DNA
sequencing33,48–54,  as have protein pores55–58.  MoS2  has shown particular promise, similar to graphene
48–50,  since  its  atomic  thickness  (~  0.6-1.7  nm49,51,59)  approaches  the  inter-nucleotide  distance  of  DNA
45,60,61. Other 2D pores29,33 include WS2

53, boron nitride52,62, MXenes54 and phosphorene63,64. Single “zero
D” MoS2 pores (with ~ 1-5 missing Mo atoms) show current-voltage characteristics59,65,66 that depart from
those of  larger  pores67,68. TMD pores have shown better wetting than graphene and have a predicted
higher water flux, specifically for pores with Mo-terminated edges45.

1.2 Emerging nanoscale device fabrication methods in TEM for ex situ applications. 

TEMs  have  been  optimized  for  characterization  and  imaging69.  Electron  irradiation  “damage”,
required  for  nanopore  drilling,  had  previously  been  considered  a  nuisance,  with  exceptions  from  the
1970s onwards70 (other references are in Ref. 1212). With the advancements of device physics, however,
there  has  been  pressure  to  modify  TEMs  into  fabrication  tools  towards  “transmission  electron  beam
ablation  lithography”12  at  the  atomic  scale14,71.  Patterning  holes/pores  and
nanowires/nanoribbons/nanochannels,  moving  single  atoms,  materials’  annealing/crystallization,  are
examples now happening in this “TEM-device fabrication” subfield. For example, in situ TEM Joule heating
by running a current through 2D graphene and MoS2 nanoribbons can heal defects, clean the 2D surface,
bond  monolayers,  and  increase  conductance15,17,35,35,72.  Above  some  irradiation  dose,  imaging  can
degrade  the   device  conductance  by  creating  defects  (such  as  S  vacancies  in  MoS2)16,35,73,  so  TEM
fabrication has to be adapted16. The TEM beam can be used as a gate for 2D material transistors20 and “
operando” TEM 74.

TEMs will  likely be automated with real-time data analysis and feedback. As of now, TEMs are
unique tools for fabricating pores29,65 . Electroporation75 may offer similar possibilities, but TEM remains a
“gold  standard”  for  structure  characterization  and  atomic-scale  insights  in  vacuum  and  other
environments76.  Given  that  devices  can  now  contain  well-characterized  atom-sized  holes,  the  field  of
nanofluidics is merging with electron microscopy, where atomic defects have been studied for decades.
Controlled electron irradiation (with electron dose and time that depend on material composition and
thickness)63,64  has  been used to drill  holes and sculpt  sub-10 nm parts12,13.  Some materials  allow easy
drilling, while others crystallize for the same parameters12. TEM fabrication has been combined with other
steps,  for  example  in  nanopore-nanoribbon16,73,77–81  field-effect-transistors  (FET)  and  the  nanopore-
nanogap  devices12,82–86.  Atomic  structures  have  been  made  such  as  carbon  atomic  chains87,  yet  the
majority  them  were  not  completed  into  ex  situ  devices.  The  challenges  of  electrical  contacts  are
sometimes downplayed88 and device stability outside of vacuum has to be addressed. It is possible to use
the same  devices for correlated in situ  and ex situ  TEM and device characterization, as exemplified by
nanopores.  2D membranes  are  suspended on TEM carbon grids  and silicon nitride (SiN)  windows.  For
nanofluidics, the membrane seals the carbon/SiN hole (done by annealing)16,48. Requirements are more
stringent than with either of the techniques alone. 

1.3 TEM image analysis approaches 

TEM is generating more data than ever before with a rising number of new materials, requiring
image analysis methods for both post-experiment and real time computation to keep up. An  experiment
can create hundreds of thousands of images in the form of movies, ptychography, and multi-dimensional
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series due to the development of new high-speed detectors89 and the environmental TEM90. It is possible
to  observe  dynamic  atomic  interactions  in  high  resolution  over  time,  providing  insight  into  material
processes91. Unautomated analysis methods include image analysis programs such as ImageJ31, in which
filter parameters are adjusted according to each image, and images are often processed one-by-one to
identify atomic defects, measure distances and angles, and calculate nanopore area40. Automation is not a
possibility here since parameters require manual tuning. New computational methods must be developed
to  analyze  TEM  images  autonomously,  whether  it  be  identifying  nanopores  or  defects,  characterizing
them, or other more complicated analyses.92,93

Multiple approaches can be taken for image analysis and feature recognition, and the choices can
be application dependent. Computer vision24,94 is a vastly studied field separate from physics imaging, and
countless algorithms have been developed for a variety of applications each with their own trade-offs in
terms  of  speed,  accuracy,  and  resource  requirements.  In  the  realm  of  TEM  atomic-resolution  image
analysis  of  nanomaterials,  existing  methods  have  varied  across  a  few  main  categories.  Real  space
approaches involve detecting deviations in intensity in real space and have been widely studied. As early
as 1992, Zuo et al.95  extrapolated lattice templates using a group of atomic columns in simulated high-
resolution  TEM  images  and  compared  intensity  peaks  to  deduce  lattice  displacements  and,  thus,
mechanical strain. The peak pairs approach, developed by Galido et al. 96 in 2007, measured the local shifts
of  image  details  around  a  crystal  defect  with  respect  to  the  ideal,  defect-free  positions  in  the  bulk.
Similarly, Bierwolf et al. (2013)97  identified local displacements by superimposing lattices and analyzing
the  resultant  moiré  structures.  Kramberger  et  al.  (2017)98  addressed  defects  subject  to  beam  driven
dynamics  and  implemented  a  maximum  likelihood  algorithm  to  represent  graphene  samples’  intrinsic
defect populations. On the contrary to real space approaches, Fourier space approaches have also shown
success. Hÿtch et al. (2018)90 employed geometric phase analysis, a technique analyzing peaks in intensity
using  fast  Fourier  transform  algorithms,  to  measure  and  map  displacement  and  strain  fields  in  high-
resolution TEM micrographs. Maksov et al.  (2019)102  used a Fourier filter and thresholding to segment
pores from lattice in WS2 to create training data for deep learning.

The rise of machine learning has resulted in a variety of new approaches pertaining to TEM atomic
-resolution  image  analysis.  Whereas  real  and  Fourier  space  algorithms  use  standard  programming
methods  where  code  is  written  to  address  the  task  head  on,  machine  learning  focuses  on  computer
algorithms  that  improve  automatically  through  experience.  One  such  machine  learning  method,
convolutional neural networks (CNN), has shown promise in image analysis. CNNs are a good fit for image
applications implicitly because they are inspired by the structure of the optical neurons in the human eye
99,  100. Kernels in different layers of the CNN adapt to learn features in an image of different sizes (i.e.,
number of  pixels),  with first  layers detecting simple image features (lines/dots)  and subsequent layers
detecting more complex features containing the features detected in the preceding layers. Convolutional
neural networks have been used in image segmentation of gold nanoparticles101 (2020), single particles in
cryo-EM  images102  (2017),  WS2  degradation  videos103  (2019),  defected  graphene  as  well  as  metallic
nanoparticles90, and chemical identification and local tracking of transformations104 (2017). Furthermore,
convolutional neural networks have been combined with other methods such as a cascade object detector
and local image analysis methods to best identify defects of metal alloys under irradiation100 (2018). 

Image analysis  algorithms have become increasingly complicated over time, largely due to the
acceleration of machine learning. While machine learning shows great promise, there are its issues. The
indirect nature of machine learning can result in the misinterpretation of results and poor reproducibility
when done without proper error analysis105,106, and there exists the danger of overfitting in deep learning
applications  in  which a  model  is  created to fit  training data,  and not  much more107.  Machine learning
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parameters do not often map intuitively to physical features108, making error analysis and troubleshooting
difficult. Thus, it is useful to take a step back from complicated algorithms and revisit standard computer
vision solutions  that  perform simply  and reliably,  and then compare and combine them with machine
learning. OpenCV is an open source computer vision library109 first released in 2000 that has pre-written
functions. Using OpenCV, we investigate direct automated feature recognition and introduce a visual grid
search method coined Comprehensive Variable Visual Plotting (CVVP) to address parameter optimization.
We compare this method with an optimized algorithm known as a gradient descent (ascent) for parameter
optimization and briefly comment on deep learning.

2. METHODS:

2.1 Terminology

In  this  paper,  by  “TEM”  imaging  we  refer  to  all  imaging  performed  inside  of  a  transmission
electron  microscope  (TEM)  machine.  This  includes  imaging  in  TEM  machines  with  various  resolution
capabilities and instrument models, from older TEMs, to high-resolution TEMs (HR-TEM), to more recent
aberration-corrected TEMs (AC-TEM) that resolves individual atoms and encompasses different imaging
modes including scanning TEM (STEM). We note that images of 2D materials discussed in our work come
from “AC-STEM” imaging, taken in the scanning imaging mode and with resolution of 0.1 nm. OpenCV
refers to the open source computer vision library used to develop the nanopore-recognition algorithm,
and  CVVP  refers  to  comprehensive  variable  visual  plotting,  a  method  developed  here  to  mimic  a  grid
search that optimizes our algorithm parameters.

2.2 TMD growth, transfer, and TEM imaging

2D TMDs presented in this work were grown by chemical vapor deposition (CVD) on silicon oxide
substrates and then transferred using a KOH-based wet transfer with PMMA resist onto holey TEM carbon
grids. All experimental details are as described for samples in Refs. 23 and 40.23,40 To make pores in 2D
membranes,  samples  were  irradiated  with  30  kV  Ga+  ion  irradiation  with  doses  of  either  5.1  ×  1013

ions/cm2  or  6.4 × 1014  ions/cm2,  as  in  Ref.  2323.  AC-STEM images  were  acquired  with  a  JEOL  JEM-

ARM200CF S/TEM at the Center for Advanced Materials and Nanotechnology at Lehigh University, with
resolution of ~  0.1  nm.  At  a  camera  length  of  10  cm,  either  a  high-angle  annular  dark-field  (HAADF)
detector with a collection angle of 54 - 220 mrad or a bright-field (BF) detector with a collection angle of 0-
3  mrad was used.To minimize defect  production and expansion of  existing defects  under the electron
beam, an acceleration voltage of 80 kV and probe current of below 20 pA were utilized. This resulted in an
imaging exposure dose of ~ 106 e-/nm2, which is not expected to cause significant knock-on or radiolysis
damage34,35 in monolayer TMDs. Some images were also obtained on a JEOL NEOARM S/TEM with similar
beam conditions at the University of Pennsylvania’s Singh Center for Nanotechnology. 

2.3 Automated image analysis via OpenCV 

Figure 1 describes the full process from synthesis of the 2D nanomaterial through chemical vapor
deposition to image analysis  and the identification of  resulting nanopores.  The included example TEM
image  exhibits  a  24  nm  x  24  nm  portion  of  a  2D  WS2  sample  exposed  to  focused  ion-beam  (FIB)  Ga+

irradiation with dosage of 5.1 ×  1013 ions/cm2. Given TEM images of WS2 with nanopores dispersed in ion-

irradiated 2D membranes, a straightforward method to automatically identify nanopores from a 2D sheet
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is through standard computer vision techniques through OpenCV that focus on extracting features as a
human would. The right portion of Figure 1 indicates the progression of functions  to separate dark regions
that look like holes (“nanopores”) from the rest of the image. In order, the set of steps are: a) a normalizing
CLAHE  (contrast  limited  adaptive  histogram  equalization)  function110,  b)  an  original  averaging
thresholding function, and c) a final find-contours and minimum area qualifying function, which we call
“Selection”.

Figure 1. Complete process from 2D material synthesis, to irradiation, to creating nanopores
and imaging. The schematic in the bottom left shows a side cross-section view of the ionic
transport measurement set-up, where ionic transport (ionic current magnitude measured)
should  be  concordant  with  inferences  from  image  analysis.  The  sequence  of  functions
applied  to  a  sample  TEM image consists  of  a  normalizing  CLAHE function  (to  equalize  for
variance  in  brightness  across  the  image),  an  Average  Thresholding  function  to  separate
darker spots from the image, and a final Selection function that specifies which spots qualify
as nanopores.

Below, note the bolded terms are parameters that are eventually optimized. The CLAHE function
was selected to equalize all portions of each image for brightness. Due to the presence of oxidation/dirt35

on the sample and other uncontrolled factors that can cause one area of an image to be brighter than
another (due to the sample preparation, for example using a PMMA resist and wet transfer65, and/or TEM
imaging  conditions),  identifying  nanopores  without  the  CLAHE  function  first  applied  causes  uneven
recognition across the image, where nanopores are indicated more readily on one portion than another.
The CLAHE function segments each image into tiles of controllable grid size and normalizes each portion
independently,  effectively  judging  and  evaluating  each  potential  nanopore  relative  to  its  surrounding
region  as  a  human eye  would.  The  result  is  a  contrast-enhanced image that  removes  any  shadows or
uneven brightness. The average thresholding function extracts areas of each image that are sufficiently
saturated with darker pixels and identifies those as potential nanopores. Most specifically, the function
iterates through each pixel within each TEM image and averages the brightness of surrounding pixels in a
specific radius from it. Pixels with an average brightness greater than a chosen threshold are distinguished
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from ones less than the threshold. Much like nanopores are distinguished by the size of the dark spot in
the human eye, the average thresholding function judges whether a pixel is a nanopore by its surrounding
pixels.  The  final  function,  selection,  completes  two  tasks.  First,  it  uses  a  built-in  OpenCV  function
findContours111  that  identifies  all  contours  in  the  image  (in  this  case,  black  spots  left  by  the  average
thresholding function). If the contour surrounds a region greater than a specific area and is sufficiently
circular—as in, it can be surrounded by a bounding box where one side is no longer than three times the
other—, the contour is qualified as a nanopore. 

In this  series of  three functions,  there are four parameters to tune,  as indicated in the bolded
words above, with the specific function containing the parameter indicated in parentheses: grid (CLAHE),
radius (Average Thresholding), threshold (Average Thresholding), and area (Selection). The units of grid,
radius, and area are pixels, pixels, and pixels2, respectively, where one pixel is around 0.4 Å wide in our test
images, varying with the magnification of the image. The units of threshold are relative but vary from a
range  of  0  to  255,  where  0  indicates  black  and 255 indicates  white.  Figure  2  exhibits  the  functions  in
greater  detail  and  specifies  the  purposes  of  each  parameter  (grid,  radius,  threshold,  area),  with  the
assistance of line scans that plot pixel intensity versus position across the line scan. 

Figure 2. The four parameters (grid, radius, threshold, and area) are explained in detail using line
scans  that  plot  pixel  brightness  versus  position  across  the  line.  (a)  The  line  scan  across  the
original image has varying brightness, resulting in a skewed trendline, which is addressed by (b) a
CLAHE function that normalizes each portion independently. (c) The radius parameter smooths
the line scan, and the threshold parameter separates darker pixels. d) Dark spots larger than a
certain area are separated and (e) identified as nanopores (shown in green in (e)). 
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Together, these four parameters may be tuned to identify nanopores properly in any TEM image
of 2D materials, as long as the pores are distinguishable by eye. Pores can be single atom vacancies up to
the size of each grid denoted by the grid parameter, which at a minimum is 1/16th of the full image. In the
images  of  2D  WS2  used  in  our  experiments,  single  W  vacancies  are  recognized  by  the  algorithm,  but
chalcogen sites (that produce a weaker contrast) are not distinguishable due to contamination of the 2D
membrane  from  the  polymer  transfer.  Provided  that  the  sequence  of  functions  is  chosen  accurately
enough  and  that  checks  to  normalize  for  measurable  deviations  (for  example,  brightness  and
magnification)  between  images  are  precise,  there  will  likely  be  a  subset  of  overlapping  parameters
between images that successfully identify all  nanopores, provided sufficiently similar images (say, TEM
images of the same material, processed the same way and taken with the same microscope settings). To
identify the best parameters, this problem was approached with two methods: a brute force grid search
with  an  added  visual  component  which  we  call  Comprehensive  Variable  Visual  Plotting  (CVVP)  which
covers all possible parameter combinations, and a gradient ascent method that traverses the parameter
space instead encompassing it. First, we discuss our goodness of fit criteria.

2.4 Choosing a goodness of fit criteria

In machine learning, goodness of fit is measured by a user-defined “loss function” that leads an
algorithm to reach the most accurate solution. As an example, a common loss function used in computer
vision and machine learning is the “hamming distance” between the manually labeled features and the
predicted features (that is, the number of positions at which corresponding values are different). In Figure
3a below, we focus on a single nanopore, with the left image as the manually labeled “standard” nanopore
and the right image as the automatically detected nanopore. In the automatic detection, the green pixels
are  rightly  identified  (also  known  as  the  true  positives,  54  pixels  in  this  example).  The  red  pixels  are
incorrectly identified (also known as the false positives, 5 pixels in this example). Lastly, the green outlined
pixels  are  unidentified  (also  known  as  the  false  negatives,  11  pixels  in  this  example).  The  hamming
distance is then 5 + 11 = 16. In our practical case as discussed further in Section 3.2, precision is a metric

which is more suited to our needs due to the focus on minimizing the number of false positive detections.
Precision is the fraction of pixels properly detected (true positives) in the number of total pixels proposed
(true positives plus false positives), so in the case in Figure 3a,  54 / 59 = 91.5 % . Figure 3b  represents

varying precision values across different combinations of the threshold and radius parameters, discussed
in  the  gradient  ascent  parameter  optimization  approach  in  Section  2.6.  The  optimal  parameter
combination (indicated by the red dot in Figure 3b) represents the set of parameters corresponding to the
maximum precision.
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Figure 3. (a) A single nanopore detected and compared with a manually labeled “standard,”
with the legend underneath indicating which pixels  are true positives,  false positives,  and
false negatives. (b) Gradient ascent approach maximizing precision across the threshold and
area parameters, where the red arrows demonstrate the direction of the steepest gradient
along the precision function. The red point indicates the optimal parameter combination in
this example where threshold = 71 and radius = 3. 

2.5 Grid search method via Comprehensive Variable Visual Plotting

Now,  given  an  identification  method,  we  describe  the  methods  for  parameter  refinement,
introducing  a  variation  on  the  traditional  grid  search  called  CVVP  where  each  training  standard  is
considered separately. Steps for a brute force automatic grid search through CVVP are described below. 

1. Establish  the  sequence  of  computer  vision  functions  (each  with  their  own  set  of  unique
parameters) to detect nanopores in TEM images, making sure to normalize images for any
variation, such as brightness and magnification. 

2. Apply the sequence of computer vision functions to detect nanopores (whether correctly or
incorrectly) with all possible combinations of the algorithm’s parameters (in our case, grid,
radius, threshold, area) for a select number of test images (in our case, five), as demonstrated
in  Figure  4a.  A  larger  sampling  size  will  better  ensure  that  the  full  dataset  is  properly
represented by the sample set, but will come at the cost of run-time, which scales linearly with
the number of sample images. If the chosen sample set already properly represents the full
dataset, increasing the sampling will not increase the accuracy of detection. Decreasing the
sampling  size  to  a  certain  point  will  harm  the  accuracy  of  the  detection  methods  due  to
potentially  unrepresentative  parameters.  We  have  found  that  4-5  sample  images  are
sufficient to represent our datasets.

3. Using  manually  labeled  images  as  “ground  truths”,  calculate  the  precision  for  each
automatically  detected  image.  Images  with  precision  greater  than  90%  are  deemed
successful.  Record  the  successful  parameter  combinations.  Any  effect  of  noise  and
contamination in the images is automatically considered by the algorithm according to how
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the  ground  truth  images  are  labeled.  Furthermore,  the  CLAHE  function  ensures  that  each
section  of  the  image  is  managed  separately,  allowing  for  vacancies  to  be  normalized  and
separated against surrounding noise and contamination.

4. Plot the successful parameter values for each test TEM image together for visual comparison,
where each training image is shown in its own color. Choose the combination of parameters
that successfully identifies nanopores for all test images (represented by a maximum overlap
of colors as illustrated in Figure 5).

Considering each sample image separately via CVVP as opposed to a singular loss function across
all images is essential in confirming the fit of the computer vision algorithm to the sample images. If there
is minimal parameter combination overlap between the sample images, the computer vision algorithm
must  be  altered  to  fit  the  problem  and  address  differences  between  the  images,  which  is  especially
important  in  a  hard-coded  algorithm.  Furthermore,  the  parameter  combination  with  the  greatest
aggregate score is  not necessarily  the combination that identifies pores most effectively for the set of
sample images (and consequently the full  dataset)  because one sample image may contribute a much
greater  score  than  another.  Observing  parameter  overlap  allows  for  a  parameter  combination  that
successfully identifies pores for the greatest number of sample, and therefore dataset, images. This brute
force  approach  requires  performing  N4  operations  of  fitting  across  the  detection  algorithm  (CLAHE,

Average  Thresholding,  and  Contour  Selection),  where  N  is  the  number  of  values  for  each  parameter

defined by our parameter space, and 4 is the dimensionality of our parameter space (for our parameters:

grid, radius, threshold, and area).

In STEM images, the precise and correct experimental focus condition can play an important role
and easily blur images. Focus variations shifted from Scherzer-Focus may create over- or under-focused
areas that affect the detection of pores. In our methods, over- or under-focus will affect pore recognition
only to the extent that it can influence how effectively manually-labeled standards can be created by the
user. The CLAHE function further ensures that each segment of the image is managed separately, reducing
the effect of focus variations across the image. Overall, focus variations create minimal issue according to
this method due to the active role of the scientist in defining the standard data.

2.6 Gradient descent/ascent method

The above CVVP grid  search in  the  parameter  space can be greatly  optimized using  a  method
usually used in the machine learning, gradient descent/ascent112. In simple terms, we initialize our current
parameters by starting with a random point of the parameter space and exploring the parameter space in
the  direction  which  gives  us  the  greatest  increase  in  precision  (where  the  prediction  is  closest  to  the
ground truth label). This method can find a quasi-optimal solution in O(N) computing time (linear) – in our

case around 10-15 steps (i.e. 1000 times faster than the full grid space exploration).  We note that more
modern algorithms exist (such as conjugate gradient methods113 ) but we chose gradient ascent as having
the  best  trade-off  between  performance  and  simplicity.  Note:  usually  in  machine  learning  gradient
descent  is  run  on  a  loss  function  and  finds  the  minima.  In  our  case,  we  run  the  gradient  method  on
precision to find the maxima, so the proper name for this variant of gradient descent is “gradient ascent”
in  our  application.  Conversely,  we  may  flip  the  precision  function  and  define  the  loss  function  as
loss = 1 − precision.
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We can more easily explain this in a 2-parameter space (let’s say if the only parameters were 
threshold and radius), shown in Figure 3b. While the grid search will compute the precision for all 
parameter combinations within the space, gradient descent will follow the path shown by the red line to
reach the optimum solution, where the algorithm chooses the direction of the steepest gradient of the 
precision function.  

3. RESULTS:

3.1 Computer vision algorithm parameters and training standards

Table 1 indicates the four (4) parameters refined in the grid search and gradient descent methods,
the  specific  function  step  with  the  parameter  it  is  associated  with,  the  range  and  step  size  of  each
parameter value tested, and a few relevant terms. 
Table 1. Parameters Altered in CVVP†, Range of Values Tested, and Terminology Used
Parameter Name Function Step Range of Values Tested
grid CLAHE‡ 5 - 30, steps of 5
radius Average Thresholding 0 - 4, steps of 1
threshold Average Thresholding 40 - 120, steps of 10
area Selection 0 - 90, steps of 10
*OpenCV = open source computer vision library used in this methodology 
†CVVP = “comprehensive variable visual plotting,” created to optimize parameters for identification
‡CLAHE = contrast limited adaptive histogram equalization to equalize pixel intensity across an image

TEM images A, B, C, D, and E are a set of five samples of WS2 with nanopores drilled sporadically
throughout  by  ion  irradiation.  Figure  4a  displays  these  five  raw  training  images  in  the  top  row.
Underneath, the same images with manually identified nanopores are used as the training images. With
the resultant computer vision algorithm developed through the training images and explained later in the
rest  of  Section  3,  Figure  4b  displays  a  few  example  test  images  (F,  J,  I)  with  nanopores  automatically
identified and their associated precision metrics. Figure 4c shows the resultant detection using the briefly
discussed deep learning Mask R-CNN method. Figure 4d shows the algorithm applied to BF-STEM images,
including the initial contrast reversal that allows for the pores to be detected.
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Figure 4. (a) Top row: AC-STEM images (A to E) of ion irradiated 2D WS2 flake containing nanopores
(dark regions in the images). Bottom row: the nanopores are manually identified in bright green for
training data.  Note the scale bars  (5 nm) are varying from A to E,  which is  accounted for in the
identification  algorithm  by  normalizing  for  magnification.  (b)  Three  example  test  images  with
nanopores  automatically  identified  using  the  computer  vision  algorithm,  with  precision  metrics
indicated.  (c)  Nanopores  from  Image  I  identified  using  a  deep  learning  Mask  R-CNN  approach
discussed in the text. Some of the pores (indicated by red arrows) are undetected (these include
nanopores with small and weak contrast and pores close to the border), as explained in Section 3.3.
(d) Application of computer vision algorithm to BF-STEM images, which requires a contrast reversal
before segmentation. Resultant precision was 91%. 

3.2 Results of the CVVP grid search method
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Provided the sequence of functions outlined in Figure 2 and the methods section, as well as the
parameters chosen (after some trial-and-error) in Table I, there were 2,700 combinations in total of the
four parameters for each of the five images provided (6 grid x 5 radius x 9 threshold x 10 area = 2,700
unique combinations) in the grid search. Therefore, a total of 13,500 images were generated indicating
nanopores (whether accurate or not) across the image. Every image was subsequently compared with the
corresponding standard image using the precision metric, where precision greater than 90% was deemed
successful. Images with successful parameter combinations were plotted on a graphic representing four
dimensions—that is, a two-dimensional grid of two-dimensional plots (see below in Figure 5). Overall, the
image generation and evaluation required approximately 30 minutes of processing time on an Ubuntu
20.04 Desktop with a 4.2 GHz Intel Core i7-7700K and 64 GB memory. 

Figure  5.  Resulting  CVVP plot  demonstrating  nanopore identification successes  for  training  TEM
images  A,  B,  C,  D,  and  E  over  the  four  altered  parameters  (grid,  radius,  threshold,  area),  with
parameter ranges indicated in Table I. As an example, for a pair of grid and radius values (grid = 19,
radius = 3) from the grid-radius two-parameter space (top left), we show the zoom into the two-
parameter subspace for the area and threshold values (bottom right). If a particular pair of area-
threshold values identifies the nanopores in a specific image, we mark that parameter pair with a
color circle in the graph on the bottom right. The five different color circles represent the successful
identification of nanopores within the five TEM images (A to E), as shown in the legend bottom left.
Overlapping  color  circles  (two  or  more)  in  the  area-threshold  plot  then  mean  that  for  these
parameters we obtained a successful identification of nanopores simultaneously for two or more
TEM images. When all five color circles are present, this means that nanopores in all images have
properly been identified. We highlight these successful nanopore identifications in yellow squares.
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By analyzing each plot created, the grid = 19, radius = 3, threshold = 71, and area = 5 parameter
combination is one of the sets that is successful for all five test images, indicating success. To gauge the
effectiveness of this method, we use six additional test images and the precision metric, which is often
used  in  machine  learning  algorithms  and  defined  as
precision =  (number of true positives) /  (number of predicted true values). While both precision and 

recall (which denotes the fraction of positives in the example set)114 are important in feature recognition,
precision is considered the main focus in our case of nanopore detection because we hope to minimize the
number of false positives, as in, our goal is to identify true nanopores as accurately as possible and obtain
the most accurate number of pores. Given the starting implementation of this method, our intention is to
ensure  that  automatically  identified  pores  are  properly  selected  first  before  incorrect  pores  become
identified. Recall on the other hand does not consider if a nanopore is incorrectly identified when one is
not present. The loss function can be replaced with any success metric as necessary by the user. When run
on the test images with the parameter combination found above, we achieved 93.6%, 98.8%, 100%, 100%,
and 97.9% precision values for Images A, B, C, D, and E, respectively. When the algorithm was run on an
additional 6 test images (F, G, H, I, J, and K) of 2D WS2 taken under similar environmental conditions, the
precision values were 92.7%, 90.4%, 92.0%, 89.9%, 97.7%, and 100%. A few of these example test images
with nanopores automatically identified are shown in Figure 4b. Across all images, recall had an average
value of 64.8%, meaning 64.8% of the surface of the nanopores was included in the detection (usually the
detection was missing parts of the nanopore border). 

3.3 Results of the gradient ascent (GA) method

Gradient  descent/ascent  (GD/GA)  finds  the  local  minima/maxima  for  concave  functions.
However,  by  adding  randomness  to  its  search  to  ensure  the  search  does  not  get  stuck  in  a  local
minimum/maximum, GD/GA can be applied for almost any function. Figure 3b illustrates how gradient
ascent works to find the maximum. For visualization, we plot the precisions vs. threshold and radius for
our computer vision algorithm on our training set when the grid and radius parameters are fixed. While
the grid-search algorithm would explore all the points on the surface, the GA algorithm will explore only
the path shown by the red arrows. We ran the GA and obtained the same optimal parameter combination
of grid = 19, radius = 3, threshold = 71, area = 5 as with grid search, as expected. 

The  gradient  ascent  method  proved  much  more  efficient  than  the  grid  search  method.  The
relevant parameter space was traversed and the optimal parameter combination found in 10 to 15 steps
on average. The run-time in our case was about 1 second on a Core i7 @ 4GHz, which is 2000 times faster
than the grid search implementation. (Note: the improvement factor between gradient ascent and grid
search scales exponentially with the number of parameters to optimize or the expansion of the parameter
grid.) 

Although GA was much faster than a brute force grid search, the implementation of a single loss
function in GA across all images (as opposed to viewing the parameter successes on each individual image
separately as in CVVP) does lead to less insight into how to improve the computer vision algorithm. That is,
the  visual  overlap  of  parameter  combinations  in  different  images  in  CVVP  (rather  than  all  of  them
averaged together) was useful on our end to choose whether to add or remove a certain parameter or
shift the range of values tested, as discussed further in Section 4. Thus, gradient ascent is best applied once
the computer vision algorithm is confirmed to be effective. 

3.3 Application to BF STEM and HRTEM images



15

In addition to AC-STEM images, the nanopore identification was successfully applied to BF-STEM
images, requiring a simple contrast reversal prior to processing. Any concerns about extending the process
to ABF imaging (requiring a contrast reversal) should be similarly satisfied according to the analysis of BF-
STEM  images.  Figure  4d  is  a  sample  BF-STEM  image  of  porous  WS2  with  nanopores  automatically
identified through the algorithm. However, since the recognition is, at the core, dependent on real-space
thresholding, in our HRTEM images it was challenging to identify the pores with this method due to the
lack of sufficient contrast difference between pores and lattice.

3.4 Future directions including deep learning methods

We  briefly  explored  how  a  deep  learning  method  compares  to  our  standard  computer  vision
approach. We chose an instance segmentation architecture (it identifies objects and their shape), which is
at the same time state-of the art and also accessible and well-supported—Mask R-CNN.115 . We slightly
customize this architecture (backbone similar to Resnet18, hyperparameters adapted for small features, 2
classes-output,  pore  and  background—see  code  in  Git)  starting  from  an  open-source  version,
matterport_maskrcnn_2017116, implemented in TensorFlow117. To partially alleviate the issue of having a
small  training  set,  we  performed image  augmentation  (flip,  mirror,  rotations,  brightness)  and  transfer
learning118, training the network initially on the COCO (Common Objects in Context) image dataset119 and
then re-training the last layers (the heads of the network) on our nanopore dataset.

For completeness, we briefly comment that in our incipient tests with Mask R-CNN, the training
was poor given that we have images for only ~ 50 pores and the results average (as small data sets are
common in new experiments). We were able to detect about 50% of the pores, although the contours
were less accurate than in the standard computer vision method presented. Examples of detection on
Image A using Mask R-CNN are found in Figure 4c. We notice that we have trouble detecting small pores
and pores with weak contrast,  as mentioned in the original  paper115.  Also, pores on the border of the
images tend to go undetected, probably as an artifact of how the algorithm applies convolution on the
border of the images. The training of the model takes 4 to 12 hours on an RTX  2060 and the detection
around 300 to 1000 milliseconds per image.  The accuracy can be improved with a larger database and if
the  models  are  tuned  for  this  specific  application  (black  and  white  images,  small  object  sizes).  Other
architectures [90,102,103] with smaller backbones may give better results for this problem and justify a
subsequent study more focused on deep learning methods for nanopore identification. 

Ultimately the goal of deep learning for nanopore TEM image analysis will be the development of
unified,  comprehensive  models  (trained  on  images  gathered  on  an  extensive  variety  of  materials  and
TEMs) able to detect and characterize nanopores on every material and TEM model without any training
or customization.

4. DISCUSSION 

The grid  search  and gradient  ascent  methods  resulted  in  the  set  of  parameters  best  suited  to
identify  nanopores  in  all  images  of  2D  WS2  derived  from  the  training  images,  provided  the  manually
written  algorithm  (in  our  case,  through  OpenCV).  Despite  the  simplicity  of  standard  computer  vision
methods, or perhaps due to it, there are obvious drawbacks in computer vision applications in general,
compared  to  other  methods.  First,  the  sequence  of  functions  applied  to  each  image  must  be  defined
manually by the researcher to properly extract the desired features with minimal error. This condition
requires a knowledge of computer vision libraries as well as time and effort to develop the most accurate
methods. Lacking a proper sequence forfeits any possibility to identify any features or discover a set of
function parameters that may work for experimental images. Furthermore, a resultant algorithm works
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only to the extent of the images encompassed by the training standards used. For example, if  a set of
parameters  with  an  algorithm  is  found  to  identify  nanopores  in  WS2  TEM  images,  the  same  set  of
parameters may not work for MoS2 TEM images. It should be noted, however, that in certain cases where
an algorithm may be created accurately, manual development may allow for the inclusion of important
expert factors as is sometimes the case in the medical field120.

Between the grid search and gradient ascent methods, gradient ascent has obvious advantages.
Run-time is most distinct, where gradient ascent can deduce the optimal set of parameters thousands of
times faster than a grid search can. Computer memory is also an important factor, where the current grid
search  method  through  CVVP  saves  every  image  created  and  often  requires  gigabytes  of  storage.
However,  grid  search  through  CVVP  has  its  advantages  over  gradient  ascent.  A  grid  search  is
comprehensive, which means certainty that the best parameter combination is found, whereas gradient
ascent  may  lead  to  a  parameter  combination  that  is  a  local  rather  than  global  minimum  in  the  loss
function. Additionally, visual insight into the grid search is helpful when first developing a computer vision
algorithm.  If  a  sequence  of  functions  is  first  proposed  but  does  not  lead  to  overlap  between  training
images, the positions of successful parameter combinations in the CVVP plot may be used to infer changes
to the algorithm, including incorporating more steps or parameters. When developing a new algorithm
using  standard  computer  vision  methods  and  optimizing  parameters,  in  the  case  that  there  are  no
parameter successes between all test images, the following steps can be taken:

1. Refining the computer vision algorithm steps to more effectively separate nanopores from the
pristine 2D sheet. For example, observing the parameter overlaps in CVVP and deducing trends
that  may  be  associated  with  specific  image  attributes  (examples  include  magnification  and
median brightness) that may be incorporated into the algorithm.

2. Introducing a greater selection of parameters for greater flexibility.
3. Operating on a greater number of test images to ensure that one of the training images is not an

outlier.
4. There is the possibility that the lack of parameter overlaps can be attributed to the inhomogeneity

of the sample images used, in which these methods are not applicable, or higher quality and more
consistent images must be used.

Compared to the FFT approach outlined in Ref. 102, standard computer vision methods (including
ours) are less easily extended to HRTEM images due to the lack of strong contrast between pores and
surrounding lattice, whereas the FFT method recognizes pores from lattice interruptions and a contrast
difference is not necessary. At the same time, however, any deviations in the image (including blurring,
noise, or contamination) may likely conflict with pore recognition through FFT, and the separation of steps
in  the  computer  vision  algorithm  can  allow  for  simpler  troubleshooting.  Compared  to  more  recent
machine  learning  methods,  the  standard  computer  vision  approach  has  several  advantages.  Whereas
machine  learning  solutions  often  require  tens  of  thousands  of  training  images,  the  bottom-up  coding
approach allows for a few test cases to effectively represent a much greater set of images, as seen in the
efficacy of the standard computer vision methods and the insufficiency in the machine learning methods
used.  Overall,  this  results  in  a  simpler  process  setting  up data,  and in  the case of  supervised machine
learning, does not require manual labeling of thousands of training data images. Similarly, many machine
learning methods require extensive training time, often requiring anything from a few hours to multiple
days to produce a model. Though considerable time must be put into algorithm creation in the standard
computer vision approach, given a working algorithm, standard computer vision methods are significantly
more  efficient,  as  shown  in  the  run  times  indicated.  Furthermore,  traditional  programming,  as  a
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straightforward,  logical  approach  to  solving  problems  from  the  bottom  up,  is  typically  simpler  to
troubleshoot, whereas other methods are less decipherable. For example, methods pertaining to machine
learning must be checked for overfitting, and care must be taken in proper error analysis to avoid the
misinterpretation  of  results  and  poor  reproducibility.  However,  we  acknowledge  that  deep  learning
methods can have a considerable advantage if a large database of nanopore images can be gathered on
different  materials  and  TEMs.  In  the  case  that  a  general  model  can  be  trained,  automated  detection
without regard to varying material, TEM model, and pore shape would be an ultimate goal. The added
functionality  of  characterization  where  pores  would  be  classified  by  shape  using  this  neural  network
would accelerate TEM technology greatly.

 
Implementation of the standard computer vision and parameter optimization methods can result

in a streamlined method built directly into TEM analysis. A scientist can simply capture a few images of a
new  nanomaterial,  manually  label  the  nanopores  in  these  first  images,  run  one  of  the  parameter
optimization  methods  to  obtain  the  ideal  set  of  parameters,  and  subsequently  identify  nanopores  in
multiple thousands of additional images fully automatically. Furthermore, one may create a database of
nanomaterials each with its ideal set of parameters that will allow for successful nanopore identification
for any material. For example, WS2 would be categorized with (grid = 19, radius = 3, threshold = 71, area =
5), whereas another material, say MoSe2, may be listed with (grid = 10, radius = 2, threshold = 60, and area
= 17), allowing for instant automated identification for new TEM images, including real-time recognition in
videos or other media. Furthermore, additional tools can be built upon the existing framework to simplify
the TEM analysis process. For example, with a nanopore-identified TEM image, a script can output a list of
all nanopore locations, sizes, and dimensions. Thus, a plot of the physical distribution of nanopores across
a full nanomaterial sample (for example, a micron by micron 2D MoS2 sample that has been irradiated
with a FIB) can be generated for further analysis and applications. These insights can be used for cross-
validation with experimental data: nanopore area calculations using identified images can be compared
with ionic measurements to confirm theories about ionic transport, atomic electron transport models can
be checked with experimental electronic measurements, the mechanical properties of a 2D sheet can be
tested with different nanopore patterns, and much more. 

5. CONCLUSION:

We  presented  2D  nanoporous,  monolayer  membranes  and  discussed  simultaneous  TEM  observation,
fabrication, and analysis. We discussed applications of 2D nanopores with developments in AC-TEM. We
delved into methods involving automated TEM image analysis and the advantages and disadvantages of
each  method.  To  analyze  TEM  images  of  2D  membranes,  we  developed  an  algorithm  according  to
standard  computer  vision  approaches  through  OpenCV,  as  well  as  a  variation  on  the  grid  search  that
implements  a  visual  component  and  an  implementation  of  the  gradient  descent/ascent  method  for
parameter optimization, and then we discussed the implications of each method. We briefly commented
on the deep learning method for comparison, although it fails here due to a small data set. Using manually
nanopore-identified  TEM  images  of  2D  WS2  as  training  data,  we  demonstrated  successful  nanopore
identification in other images using the computer vision approach and parameter refinement, obtaining
an  average  precision  of  98%  on  the  training  set  and  94%  on  the  test  set.  Lastly,  we  discussed  the
implications  of  TEM  image  analysis  and  automated  nanopore  detection,  and  proposed  a  streamlined
method built directly into TEM analysis methods, as well as further steps to pursue given an automated
nanopore detection program. The juxtaposition of  nanomaterial  physics,  TEM, and images analysis  via
computer science offers insight into a bright future of microscopy and nanofabrication that will benefit
from cross-disciplinary efforts. 
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Code Availability:

The code developed in this paper, including the CVVP grid search and gradient ascent methods, is openly
available at https://github.com/joshualchen/nanopore-identification. Further details regarding OpenCV
can be found at https://opencv.org/.
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